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Recently we proposed a soliton model for the crystalline ~-relaxation in polyethylene. The continuum limit 
theory accounted reasonably well for the observed dielectric data at low temperatures, but failed to explain 
the change in the shape of the Cole-Cole plots (increase in the Cole-Cole width parameter fl) with 
temperature. We extend the theory by considering the effects of both conformational defects and soliton 
interactions. In the defect barrier model the conformational defects are modelled as infinite reflecting or 
absorbing barriers to soliton motion. This results in a fl = 0.48 Williams-Watts dielectric decay function not 
significantly different from the defect-free result, which predicts no change in the shape of the Cole-Cole plot 
with temperature. Recent simulation results in the non-continuum (interacting soliton) regime demonstrate 
temperature-dependent power-law behaviour, which gives qualitative but not quantitative agreement with 
the experiments at higher temperatures. It is suggested that the conformational defects may act as effective 
barriers to soliton motion, improving the quantitative comparison with the experiments. 

(Keywords: soUton model; a-relaxation; crystalline polyethylene; eonformationai defects; defect barrier model; non- 
continuum reghne; Cole-Cole plots) 

INTRODUCTION 

We have recently 1-5 considered a model for dielectric 
relaxation in crystalline polyethylene and similar 
polymers involving the Brownian motion of a freely 
propagating twist of the chain axis, modelled as a sine- 
Gordon soliton. Dilutely spaced dipoles perpendicular to 
the chain axis in oxidized polyethylene (0.8 C=O per 1000 
CH2 groups) 6 rotate back and forth as the soliton moves 
up and down the chain as observed in an alternating 
electric field. A complex frequency-dependent dielectric 
constant e*(co)= e'(co)-ie"(co) can be measured, which is 
simply related to the dielectric decay function or dipole- 
dipole correlation function C(t) as: 

oo 

e*(a~)--eoo ~ dte_i~t~(t ) (1) 
~O--gco J 

0 

where go and goo are the low- and high-frequency limiting 
values of g*(o~). The dielectric data are usually presented 
as a Cole-Cole plot, a plot of the imaginary part vs. the 
real part of the dielectric constant as a parametric 
function of frequency. For polyethylene, the experimental 
data are presented in terms of the empirical fit of Cole and 
Cole 7: 

e*(to)-g~ 1 
go - g~ 1 + (ia~z) ~cc (2) 

where the Cole-cole width parameter flcc varies between 
0 and 1. 

In ref. 1 we found that in the continuum limit the 
dielectric decay function predicted by the soliton model 
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fits the Williams-Watts empirical decay functionS: 

F /tVwwq 

J 0<flww~< 1 (3) 

exactly with a Williams-Watts width parameter 
flww = 0.50. We compared this result with the constant- 
volume dielectric experiments on polyethylene of Sayre et 
al. 6, and found that the best Cole-Cole fit of the lowest 
measured temperature experimental data ~cc = 0.66 at 
T=50°C) agreed with the best Cole-cole fit to the 
continuum theory result. However, the Cole~Cole plots 
(and the Cole-Cole empirical fit) of the measured g- 
relaxation data in polyethylene are symmetric curves 6, 
unlike the theoretical result (and the Williams-Watts 
empirical fit), which shows asymmetry. Also, the 
polyethylene experiments 6 show a change in the shape of 
the Cole-cole plots with temperature. In particular, it 
was found that the Cole-cole width parameter flcc 
increased with increasing temperature, up to about 
flcc~0.87 by T=150°C, for several different specific 
volumes in the constant-volume experiments. 

The continuum limit theory of ref. 1 makes two major 
simplifying assumptions, which are good approximations 
only at low temperatures and hence may be responsible 
for these discrepancies. First, it is assumed that we are 
dealing with a perfect crystal, i.e. that there are no 
conformational defects on the zigzag planar polyethylene 
chains of the crystalline regions. In actual semicrystalline 
polyethylene there are significant amounts of both 
Pechhold kinks and Reneker defects. Pechhold kinks 9 are 
g+tg- configurations and Reneker defects 1°, also called 
dispirations, are six- or seven-(CH2)-unit 180 ° twists with 
half-a-lattice-unit contraction per twist along the chain 
axis. These conformational defects could impede or 
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otherwise interfere with soliton motion and so alter the 
observed ~-relaxation. Additionally it was assumed that 
the solitons are non-interacting. But it is clear from the 
experimental observations that the Cole-Cole plots do 
not scale with temperature. Since the effect increases with 
temperature, as does the soliton density, we could 
actually be in the non-continuum regime of the soliton 
model as discussed in ref. 3, and soliton interactions could 
be responsible for the observations. 

The conformational defects have very high 
propagation barriers, about 10 kcal mol-  1 for Pechhold 
kinks 9 and about 4kcalmo1-1 for Reneker defects 1°, 
giving respective Boltzmann factor ratios to free soliton 
propagation of 107 and l0 s at room temperature. The 
defect velocities are consequently very low (the Reneker 
defect, for example, moves at only about 10 -6 of the 
soliton velocityl°). These relatively immobile defects are 
unlikely to be directly responsible for the ~t-relaxation in 
polyethylene TM.  However, conformational defects are 
numerous enough compared to solitons in polyethylene 
to be expected possibly to have important effects on the ~- 
relaxation process, by interfering with soliton motion. 
(Solitons have much higher creation energies, 
19.4kcalmol -~ measured 6 at constant volume, as 
opposed to the calculated values of 12-13 kcal tool-~ for 
the Reneker defect ~° and 8 kcal mol-~ for the Pechhold 
kink 12, giving defect-to-soliton Boltzmann factor ratios 
of l0 s and l0 s, respectively.) Over the Sayre et al. 
experimental temperature range 6 of 50 to 150°C, 
Pechhold kinks increase by a factor of 20, Reneker defects 
increase by a factor of 50, and soliton density increases by 
a factor of 3000 (based on the creation energies cited). So 
while conformational defects are much more common, 
solitons are very mobile and increase in population much 
more rapidly with temperature, suggesting the 
importance of soliton interactions. Both possibilities are 
feasible as potential explanations of the temperature 
dependence of the dielectric ~-relaxation in polyethylene. 

In the next section we examine the defect barrier model, 
where conformational defects act as reflecting or 
absorbing barriers to soliton motion. Then we look at the 
potential implications of non-continuum soliton 
interactions, and finally we discuss other explanations 
and offer conclusions. 

DEFECT BARRIER MODEL 

The densely populated and slow-moving defects were 
modelled as infinite fixed reflecting barriers to the one- 
dimensional (1D) random walk of the soliton. Because of 
reflection, only the nearest defect on either side is 
important (the absorbing defect situation is very similar 
and will be discussed below). We still assume the solitons 
are non-interacting (continuum limit), because there are 
many fewer solitons than defects and the defect barriers 
would tend to separate them and prevent them from 
interacting. We also carry out the derivation in the 
diffusive limit for simplicity, since the damping constant ~, 
was found to be large in ref. 1. 

In the case of dilute dipoles and non-interacting 
solitons, the dielectric decay function C(t) is given by 4,s: 

C(t) = e x p [ -  2no<lAx(t)l>] (4) 

where ~/o is the soliton density and (]Ax(t)[) is the soliton 

displacement at time t, ensemble-averaged over the 
appropriate Fokker-Planck Green's function. In the 
diffusive limit this is 1 s: 

1 [ \ -  x 2 
W (x,t) = 2(ItDt)I/2 exPt-~- ) (5) 

where D=(flm*7) -~ is the Einstein relation for the 
diffusion constant. For the case of a perfect crystal (no 
defects), Skinner and Wolynes found4'S: 

<lAx(t)l) = f Ixlw(x,t)dx 
- - c O  

(6) 

which produced the result: 

F f tV/27 

J (7) 

in the diffusive limit :'4's, the fl=0.5 Williams-Watts 
behaviour, with 

To ~ = 16rl~/(nD) (8) 

being the inverse soliton diffusion time. 
In the presence of defects we need two additional 

(dominant) terms, allowing the soliton to be reflected 
once from the nearest defect on either side of the soliton 
initial position (from which the soliton position x and the 
defect position x~ are measured). (The exact result is an 
infinite sum of mathematically similar multiple reflection 
terms 14, but these other terms are less important, similar 
in form, and do not change the general conclusions, and so 
are omitted here for simplicity.) In addition to (6), 
<lAx(t)l> includes: 

f pD(Xi)dx, I IxlW(2x'-Ixl't)d  
-- oO 

(9) 

for the xl > 0, x < x ~  case, and: 

0 o0 

f ,D(--x,)dx, f I Iw(2x,- Ixl,') dx 
- - oO  X I 

(lo) 

for the x l < 0 ,  x > x z  case. Here we average over the 
Poisson distribution of nearest-neighbour defect 
positions pD(x~) with defect density r/o: 

PD (Xl) = r/Dexp( --  ~/DX1 ) (11) 

which is derived la based on a random distribution of 
defects on the one-dimensional chain. W(2xt - x,t) is the 
Fokker-Planck Green's function for the case of reflection 
from an infinite barrier at xl. 

The resulting dielectric decay function C(t) after 
including these defect terms is: 

t G t 

264 POLYMER, 1988, Vol 29, February 



' I I I 

0 .8  

0 . 6  

04  

0 .2  

-2.0 -I .0 0 l.O .0 

kOglo ( t / r  o ) 

F i g u r e  1 Best fit of the Williams-Watts empirical function 
(flww = 0.48, z o = 0.90) (full curve) to the defect barrier model result ( 0 )  
in the reflecting case 

where TDI= r/~D is the inverse defect diffusion time and 

G(~)=exp(t~erfcF(t~x/21 
\~DI L\%I J 

(13) 

is a function of the type obtained by Glarum 15 in a much 
more general (but also nearest-neighbour) 1D defect 
diffusion model of dielectric relaxation. Even though ZD 1 
is an Arrhenius function of temperature (through the 
defect density r/D), the low- and high-temperature limits of 
C(t) are the same, and equal to the defect-free result (7). A 
non-linear least-squares fit of C(t) to the Williams-Watts 
empirical function (3) results in an excellent fit of nearly 
all t values for flww =0.48 and T = 0.90 (see Figure 1). This 
also is a very small change from the defect-free case 
~ww = 0.50, z = 1.00). 

A comparison of the defect-free case with this result is 
shown in Figure 2. We have the absorbing defect case by 
merely changing the sign ~3 on the added terms in (12), so 
that the result would also be very similar to the defect-free 
case. (With an absorbing barrier there are of course no 
multiple reflection terms, so the expression would be 
exact.) Obviously if the solitons just pass through the 
defects unhindered, we also get the perfect crystal result. 

Notice that C(t) is a function of (tMD), so that the 
complex Laplace transform e*(~o) is a function of CORD. 
Although changing the defect density r/o would change ZD 
(the scale), it would not affect flww and thus the shape of 
the resulting Cole~ole  plots. This means that the defect 
barrier model does not predict either the symmetric shape 
or the change with temperature of the shape of the 
observed polyethylene Cole-Cole plots (the change in 
relaxation width with temperature). 

Crystalline relaxation in polyethylene: K. J. Wahlstrand 

NON-CONTINUUM SOLITON EFFECTS 

From the above defect barrier results it is apparent that 
defects do not have much of a direct effect on the observed 
a-relaxation dynamics, so we do not have to consider 
polymer chains with both defects and multiple soliton 
effects. 

Recall the temperature-varying power-law behaviour 
in the non-continuum (interacting) soliton regime from 
the simulation results of ref. 3. Notice that all three major 
empirical expressions for the frequency-dependent 
dielectric constant e*(co) in polymers also show a 
dominant power-law behaviour 8 for the dielectric decay 
function derivative (~(t). The Williams-Watts a and Cole- 
Davidson 16'17 (~(t) expressions are dominated (on the 
simulation timescale) by positive-exponent power laws 
where the exponent is the same as the width parameter 
minus one at long times17; and for the Cole-Cole 7 
empirical function we have 18: 

"" zF(1-flcc)krJ >> 1 (14) 

a negative-exponent power law where the exponent is the 
same as the negative of the width parameter flcc minus 
one at long times. 

Our observed power-law exponents ~ for non- 
continuum soliton C(t) (the simulation results are for long 
times too) are also between - 1  and + 1, and decrease 
with temperature according to3: 

fl~ (-0.31 +0 .05) ln (~)  (15) 

for all values, whether positive or negative. Positive 
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values might indicate either Williams-Watts or Cole- 
Davidson 8*(a~) behaviour (very similar and related in 
practiceXg), and negative values would agree with Cole- 
Cole behaviour. Notice that at higher temperatures the 
power-law exponents are negative and the resulting 
flcc = - f l  increases with increasing temperature, the 
qualitative result of the polyethylene experiments. Cole- 
Cole behaviour would also give symmetric Cole--Cole 
plots, as observed for polyethylene. This qualitative 
agreement in the long-time limit is very encouraging and 
may be the explanation for the observed non-scaling in 
temperature of the ~t-relaxation behaviour in poly- 
ethylene. 

It is clearly unrealistic to expect quantitative agreement 
in a model this simple. It is also difficult to get more than 
qualitative information from the polyethylene experi- 
ments as far as the width parameter vs. temperature is 
concerned. It appears to be roughly linear in the 
temperature 6, as opposed to the log of the temperature 6, 
but the point scatter is quite large, so a general increase 
with temperature is about all that can be concluded. In 
the reduced units for polyethylene of ref. 1, the 50 to 150°C 
temperature range is about TR = 2.9 to 3.8. The activation 
energy of the ~t-relaxation (19.4 kcal mol- 1 (ref. 6)) clearly 
overestimates the coupling constant (based on the 
continuum limit soliton energy), giving a value of 
(C/A)~/2 ~ 11. A more realistic value (keeping in mind that 
the parameter values in ref. 1 are quite approximate) 
would be (C/A)1/2,~ 3, based on a 12-unit soliton length 
estimated by Mansfield and Boyd 1~'2°. This gives 
flEK~3-4, which is only borderline non-continuum 
range. 

Clearly we need a much higher effective temperature or 
greater soliton density (lower [3EK) for the power-law 
exponent to be quantitative at observed values. There 
are several ways this could be accomplished. Stress from 
the amorphous regions of the semicrystalline polymer 
might reduce the crystal register mismatch and hence the 
soliton creation energy, and increase the effective soliton 
density. Local variations in bond length and valence 
angle could create effective barriers to propagation of the 
soliton. Or conformational defects, which have so far 
been ignored in this section, may play a role. 

It has been suggested before 2x that in real physical 
situations there may be effective barriers to soliton 
propagation. In ref. 3 we noted that effective barriers 
lower the value of the power-law exponent, so in_general 
barriers to soliton propagation might lower the fl values 
(raise flcc) to what is observed in polyethylene. 
Conformational defects, which from the previous section 
probably do not act as completely reflecting or absorbing 
barriers, may nevertheless impede soliton motion as 
effective barriers. Including the effects of greater soliton 
density and defects as soliton barriers may allow 
quantitative agreement between the soliton model and 
polyethylene dielectric experiments. 

DISCUSSION 

It has been found rather generally that ~-relaxations in 
polymers tend to be symmetric 22. This was observed in 
both constant-volume 6 and the more usual constant- 
pressure 23 dielectric experiments on polyethylene. It is 
also generally found that polymer relaxation widths tend 
to narrow (the relaxation width parameter increases) with 

increasing temperature 22. The latter result is observed in 
constant-pressure experiments rather than constant- 
volume ones, however, so the significance is unclear. 

We know that Ashcraft and Boyd 23 obtained very 
different results for constant-pressure dielectric 
experiments on polyethylene than Sayre et al. 6 obtained 
at constant volume. Ashcraft and Boyd found no trend in 
the ~t-relaxation width with temperature and the product 
of the dielectric intensity and temperature (e0- e~)T was 
found to be roughly constant with temperature 23. Sayre 
et al. found the ~-relaxation width to increase with 
temperature and (eo-e®)T to decrease sharply with 
temperature 6 (see below). The 7-relaxation width was 
found to increase with temperature at constant 
pressure 2a, but was independent of temperature at 
constant volume 6. It appears difficult to conclude 
anything from constant-pressure experiments theoreti- 
cally, because temperature and density effects get mixed 
(the activation energy depends on volume, which depends 
on temperature). We were unable to find any other 
constant-volume polymer dielectric experiments in the 
literature, so comparison with other polymer results 
cannot be made at this time. 

The explanation 12 that Boyd and Sayre had for their 
observation 6 that (eo-e~)T decreased with increasing 
temperature is of interest in relation to our results. In the 
'kink-assisted relaxation model'12 they hypothesized that 
(e0-e=)T, which is expected to be otherwise constant 
with temperature through the Onsager-Kirkwood 
equation 2.'25, decreases with a decrease in the number of 
participating dipoles due to an alternative relaxation 
path. Sayre and Boyd suggested that Pechhold kinks 
result in a local chain shortening that reduces the 
mismatch energy and hence the activation energy for a 
soliton on the chain, resulting in a much higher-frequency 
process, which appears as a separate relaxation ~2. This 
means that 9 ÷ tO- defects would not have an observable 
effect on ~t-relaxation dynamics, much as our defect 
barrier models showed little change from the defect-free 
result. It should be noted, however, that Reneker defects 
do not affect chain mismatch, and hence could act as the 
effective barriers needed to raise the relaxation widths to 
the observed values on chains participating in the ~t- 
relaxation. 

Another theoretical comparison of the soliton model 
with Sayre et al.'s constant-volume experiments was done 
recently by Skinner and Park 26. They fit the numerical 
transform of the continuum limit expression for the 
dielectric decay function C(t) for general damping 
constant 7: 

I- 4qo f~ t - l+exp ( -y t ) ' ~  1/2-] 
c(t)= -) J (16) 

finding an Arrhenius temperature dependence for ~ and 
using three other adjustable parameters. Aside from 
predicting extremely small values of 7 compared to what 
we have observed in the simulations of refs. 1 and 3, they 
achieved very successful agreement with the experiments. 
The actual temperature dependence of 7 is much weaker, 
however, with literature estimates 27-29 of T -x or T ~/2, 
and our simulation result 3 of T TM, in contrast to 
Arrhenius behaviour. Skinner and Park suggest that 
collisions with immobile defects account for this 26. Our 
defect barrier model above is very similar to this, but a 
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diffusive limit was assumed in agreement with our y values 
measured from the simulations 1'3. We found no direct 
effect on ~t-relaxation dynamics of defect scattering. 
Skinner and Park also suggest 26 that soliton interactions 
may be important and modify the long-time behaviour of 
the correlation function, as we found in ref. 3 and above, 
but attribute the small values of y they found to the 
neglect of these interactions 26, in contrast to our results 3. 

In conclusion, we feel that the non-continuum limit 
simulation (interacting soliton) results support the 
symmetric ~-relaxation and the qualitative increase in 
Coleq201e relaxation width with temperature observed in 
the constant-volume polyethylene experiments. Confor- 
mational defects do not seem to have a major effect on the 
observed ~-relaxation dynamics except as effective 
barriers to soliton motion, raising the observed relaxation 
widths. The soliton model has even more conclusive 
experimental agreement than before1, and remains a clear 
alternativC 1 to the vague concept of 'distribution of 
relaxation times'. 
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